"The Life Sciences, Biosecurity, and Dual-Use Research"

Brian Rappert &

MAKING KNOWLEDGE WORK

What We are Doing

ESRC Project: Coding Research: Biological Weapons, Security & the Silencing of Science

- How, if at all, might regulatory controls challenge the existing norms and conduct of research?
- How can policy makers develop new approaches for minimising bioweapon threats through engagement with bioscience communities?
- Can codes of conduct be a viable and effective policy option?

Starting Points: Importance of keeping the conversation going; testing out views

Ethics & Research: Information, consent, & contact

Cause for Concern?: Synthetic Polio Virus

- In 2002 Wimmer et al. (State University of New York) synthesised chemically polio virus
- Over a few years made to order DNA segments & public sequence info used to construct full-length cDNA version, then a viable virus
- Danger: Suggested technique for synthetically creating other viruses (e.g. Ebola *New Scientist*)
- Controversy: Novel? Necessary?

Should it have been done?

Cause for Concern?

- 'I think it's inflammatory, without scientific justification...To purposely make a synthetic human pathogen is irresponsible.' Venter, *NYT*, July 2002
- November 2003 Craig Venter et al. synthesise the bacteriophage phi-X174 from segments

- Improved process with less contamination, took 14 days
- Funded by US Department of Energy to find new ways of environmental clean-

up

Is artificial synthesis still a good idea?

"We have the enabling technology to take us to these next exciting frontiers" 4 Dr Craig Venter

Mousepox: What Should be Done?

- 2001 Australian researchers employ mousepox to immunize mice against egg protein, insertion of the IL-4 gene to > antibody response
- Recombinant virus killed mice genetically resistant to mousepox and those immunized against it
- 'Unforeseen' potential for >> lethality of smallpox
- To publish or not to publish?

Should such experimental results have been widely circulated?

The British Reserve

- Officials reported that in late 1990s similar results to the Australian mousepox research were (unexpectedly) obtained
- Researchers informed HSE, but deliberately avoided discussing bioweapons implications
- Bembridge et al. *Journal of Virology* 1998 72: 4080-7???
 - IL-4 in vaccinia virus
 - Manipulation with IL-4 had definite negative effects on the course of recovery

How should researchers make their research results available to others?

Responding to Bioweapons Threats: Keeping Ahead Through Research

2001 -- Leaked US Initiatives

(1) Genetically enhance the potency of the bacterium that causes anthrax to test defenses

(2) Assembled and tested of an old Soviet cluster germ bomb (w/stimulant)

(3) Built bioweapon plant from commercially available materials (w/stimulant)

Should we always seek to 'run faster'?

US Fink Committee: What is Being Done

- New research controls: Post 9-11 and anthrax attacks in the US
- Recommendations include expansion of NIH rDNA review procedures for 'experiments of concern' including:
 - How to make vaccine ineffective
 - Alter host range of pathogen
 - Enhance virulence of pathogen
 - Confer resistance to useful antibiotics & antivirals
- Proposals submitted to Local Institutional Biosafety Committee, perhaps to national expanded RAC for 'assessment'
- Establishment of National Science Advisory Board for Biosecurity to review, survey and educate bioscientists

Is this oversight reasonable, dangerous, etc?

Spanish Flu: What Should be Done?

- 1918 'Spanish' flu killed ~30 million
- 1997 US Armed Forces Institute of Pathology isolate and sequence nine fragments of viral RNA; full sequencing now near completion
- 2001+ Recombinant viruses of influenza formed using 1918 flu genes; molecular analysis possible
- 2004 1918 surface proteins substituted in mouse and human flu strains

9

Are there any limits on what should be done or how it is communicated?

Data Access and Genomics Research

Data access – info, biomaterials, etc. – as negotiated e.g., Hilgartner, S. 1998. In *Private Science*

HGP Single Chromosome Workshops in 1990s

- 'Gene Hunters' : to share or not to share?
- Strategic calculations: delayed release, not submit to Genome Data Base, decline to release clones
- Forced requirement for presented materials to be made public
- Other examples from Yeast Sequencing, Sequence-Tagged Sites

In practice does science work according to free and open communication?

Beyond Bugs

Fink Committee: 'The Committee has initially limited its concerns to cover those possibilities that represent a plausible danger... Over time, however, the Committee believes that it will be necessary to expand the experiments of concern to cover a significantly wider range of potential threats.'

Bioregulators and Weaponry

• US/UK historical interest in 'incapacitants' (e.g., 3quinuclidinyl benzilate)

• Pennsylvania State University, *The Advantages and Limitations* of Calmatives for Use as a Non-Lethal Technique (2000)

Drug classes: Benzodiazepines, α_2 adrenergic receptor agonists, Dopamine D3 receptor agonists

Conflict between serving nation and not developing biochemical weapons? 11

A Code of Conduct?

- 'Codes of Conduct' : Royal Society, Foreign Office, ICRC, BMA, and House of Commons Committees. House of Commons S&T Committee 'urge scientific learned societies to consider introducing an overt ethical code of conduct as a prerequisite of membership' into the scientific profession
- Why code?
- <u>Biological Weapons Convention</u> international meeting in 2005 about codes

UK Foreign Office as chair

What individual and collective responsibilities should be included?¹²

Forthcoming Codes

"If the scientific community does not take stronger action to regulate itself then it risks having ill-judged restrictions placed on it by politicians."

> -- UK House of Commons Science & Technology Committee (2003)

"Every major technology - metallurgy, explosives, internal combustion, aviation, electronics, nuclear energy - has been intensively exploited, not only for peaceful purposes but also for hostile ones. Must this also happen with biotechnology, certain to be a dominant technology of the twenty-first century?"

> Matthew Meselson Professor of Molecular Biology, Harvard University

What steps might be taken by you as individuals and by bioscience bodies to avoid this happening? 14

Thank You

<u>For further information:</u> www.ex.ac.uk/codesofconduct B.Rappert@ex.ac.uk

Further References

- Alberts, B. & May, R. 2002. 'Scientists Support for Biological Weapons Controls' *Science* (November 8):1135.
- British Medical Association. 1999. *Biotechnology, Weapons and Humanity* London: Hardwood Academic.
- Cello, C., Paul, A. & Wimmer, E. 2002. 'Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template' *Science* 297: 1016-8.
- Committee on Research Standards and Practices to Prevent the Destructive Application of Biotechnology, Development, Security, and Cooperation. 2004. *Biotechnology Research in an Age of Terrorism* Washington, DC: National Research Council.

Dando M. 2001. The New Biological Weapons Boulder: Lynne Rienner.

Foreign and Commonwealth Office. 2002. *Strengthening the Biological and Toxin Weapons Convention* London: HMSO. http:// www.bradford.ac.uk/acad/sbtwc/other/fcobw.pdf

Further References

- Hilgartner, S. 1998. 'Data Access Policy in Genome Research' In *Private Science* A. Thackray (ed.) Philadelphia: University of Pennsylvania.
- Jackson, R. Ramsay, A., Christensen, C., Beaton, S. Hall, D., & Ramshaw, I. 2001. 'Expression of Mouse Interleukin-4 by a Recombinant Ectromelia Virus Suppresses Cytolytic Lymphocyte Responses and Overcomes Genetic Resistance to Mousepox' *Journal of Virology* 75(3): 1205-1210.
- National Science Advisory Board for Biosecurity. 2004. http:// www.nap.edu/books/0309089778/html/
- Poste, G. 2002. *Advances in Biotechnology: Promise or Peril*. Available at www.hopkins-defense.org/sympcast/transcripts/trans_post.html.
- Rappert, B. 2003. 'Coding Ethical Behaviour: The Challenges of Biological Weapons' Science & Engineering Ethics 9(4) Available at http://www.ex.ac.uk/~br201/Research/Bioweapons/index.htm